Overview


This document was prepared for the virtual workshop, Georeferencing for Paleo: Refreshing the approach to fossil localities. Our goal here is to explore the georeferenced data that paleontological collections are currently providing to biodiversity data aggregators, namely iDigBio and GBIF. In particular, we want to know…

  1. How prevalent is georeferencing in our data? (Workshop Day 1)
  2. What standard terms are in use? (Workshop Day 1)
  3. How are standard terms being used? (Workshop Day 2)
# Load core libraries; install these packages if you have not already
library(ridigbio)
library(tidyverse)
library(wordcloud)

# Load library for making nice HTML output
library(kableExtra)

What data are we looking at?

Data in this example (unless otherwise noted) was downloaded from iDigBio on 2020-02-04 using the query: basisofrecord = “fossilspecimen.” A data download from iDigBio includes both the raw data, as published by the data provider (e.g. the collection), and a second version of the same data which has been processed by iDigBio. You can learn more about what the difference between raw and processed recordsets contained in an iDigBio data download in this blog post.

# Read into R the raw occurrence data, which should be whatever was published by
# the data provider (e.g. the collection)
raw_idb <- read_csv("4336327f-dae0-4877-9d6d-460cb3a6ef13/occurrence_raw.csv", 
                    na = character(),
                    col_types = cols())

# Read into R the version of occurrence data processed by iDigBio
processed_idb <- read_csv("4336327f-dae0-4877-9d6d-460cb3a6ef13/occurrence.csv", 
                          na = character(),
                          col_types = cols())

# Count how many total records are present in `processed_idb`
records_total <- nrow(processed_idb)

# Count how many records are georeferenced in `processed_idb`
records_georef <- processed_idb %>% 
  filter(`idigbio:geoPoint` != "") %>% 
  nrow()

Our data here are comprised of 57 provider datasets representing a total of 5,569,112 specimen records.

Example of what the raw provider data look like

 

coreid aec:associatedTaxa dc:rights dcterms:accessRights dcterms:bibliographicCitation dcterms:language dcterms:license dcterms:modified dcterms:references dcterms:rights dcterms:rightsHolder dcterms:source dcterms:type dwc:Identification dwc:MeasurementOrFact dwc:ResourceRelationship dwc:VerbatimEventDate dwc:acceptedNameUsage dwc:acceptedNameUsageID dwc:accessRights dwc:associatedMedia dwc:associatedOccurrences dwc:associatedOrganisms dwc:associatedReferences dwc:associatedSequences dwc:associatedTaxa dwc:basisOfRecord dwc:bed dwc:behavior dwc:catalogNumber dwc:class dwc:classs dwc:collectionCode dwc:collectionID dwc:continent dwc:coordinatePrecision dwc:coordinateUncertaintyInMeters dwc:country dwc:countryCode dwc:county dwc:dataGeneralizations dwc:datasetID dwc:datasetName dwc:dateIdentified dwc:day dwc:decimalLatitude dwc:decimalLongitude dwc:disposition dwc:dynamicProperties dwc:earliestAgeOrLowestStage dwc:earliestEonOrLowestEonothem dwc:earliestEpochOrLowestSeries dwc:earliestEraOrLowestErathem dwc:earliestPeriodOrLowestSystem dwc:endDayOfYear dwc:establishmentMeans dwc:eventDate dwc:eventID dwc:eventRemarks dwc:eventTime dwc:family dwc:fieldNotes dwc:fieldNumber dwc:footprintSRS dwc:footprintSpatialFit dwc:footprintWKT dwc:formation dwc:genus dwc:geodeticDatum dwc:geologicalContextID dwc:georeferenceProtocol dwc:georeferenceRemarks dwc:georeferenceSources dwc:georeferenceVerificationStatus dwc:georeferencedBy dwc:georeferencedDate dwc:group dwc:habitat dwc:higherClassification dwc:higherGeography dwc:higherGeographyID dwc:highestBiostratigraphicZone dwc:identificationID dwc:identificationQualifier dwc:identificationReferences dwc:identificationRemarks dwc:identificationVerificationStatus dwc:identifiedBy dwc:individualCount dwc:informationWithheld dwc:infraspecificEpithet dwc:institutionCode dwc:institutionID dwc:island dwc:islandGroup dwc:kingdom dwc:language dwc:latestAgeOrHighestStage dwc:latestEonOrHighestEonothem dwc:latestEpochOrHighestSeries dwc:latestEraOrHighestErathem dwc:latestPeriodOrHighestSystem dwc:lifeStage dwc:lithostratigraphicTerms dwc:locality dwc:locationAccordingTo dwc:locationID dwc:locationRemarks dwc:lowestBiostratigraphicZone dwc:materialSampleID dwc:maximumDepthInMeters dwc:maximumElevationInMeters dwc:member dwc:minimumDepthInMeters dwc:minimumElevationInMeters dwc:modified dwc:month dwc:municipality dwc:nameAccordingTo dwc:namePublishedIn dwc:namePublishedInID dwc:namePublishedInYear dwc:nomenclaturalCode dwc:nomenclaturalStatus dwc:occurrenceDetails dwc:occurrenceID dwc:occurrenceRemarks dwc:occurrenceStatus dwc:order dwc:organismID dwc:organismName dwc:organismQuantity dwc:organismQuantityType dwc:organismRemarks dwc:originalNameUsage dwc:originalNameUsageID dwc:otherCatalogNumbers dwc:ownerInstitutionCode dwc:parentNameUsage dwc:phylum dwc:pointRadiusSpatialFit dwc:preparations dwc:previousIdentifications dwc:recordNumber dwc:recordedBy dwc:reproductiveCondition dwc:rights dwc:rightsHolder dwc:sampleSizeValue dwc:samplingEffort dwc:samplingProtocol dwc:scientificName dwc:scientificNameAuthorship dwc:scientificNameID dwc:sex dwc:specificEpithet dwc:startDayOfYear dwc:stateProvince dwc:subgenus dwc:taxonID dwc:taxonRank dwc:taxonRemarks dwc:taxonomicStatus dwc:typeStatus dwc:verbatimCoordinateSystem dwc:verbatimCoordinates dwc:verbatimDepth dwc:verbatimElevation dwc:verbatimEventDate dwc:verbatimLatitude dwc:verbatimLocality dwc:verbatimLongitude dwc:verbatimSRS dwc:verbatimTaxonRank dwc:vernacularName dwc:waterBody dwc:year gbif:Identifier gbif:Reference idigbio:recordId symbiota:recordEnteredBy symbiota:verbatimScientificName zan:ChronometricDate
3ee2f19f-046f-4c52-ab31-f9b42ed12a89 NA NA 2011-05-09 00:00:00 NA NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA Lzzz/4510 NA Fossil NA Asia NA NA Indonesia NA NA NA NA NA NA NA NA NA NA Cervidae NA NA NA NA Axis NA NA NA NA NA NA NA NA MZLU NA NA NA NA NA Sangiran NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA MZLU:Fossil:Lzzz/4510 Artiodactyla NA NA NA NA NA NA NA NA NA Skeletal part(s) NA NA NA NA NA NA NA Axis sp NA NA NA Java NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
9702a3d1-810a-4f9a-b9e9-7bc04f54f7f4 NA NA Open Access, http://creativecommons.org/publicdomain/zero/1.0/; see Yale Peabody policies at: http://hdl.handle.net/10079/8931zqj Paramys (YPM VP 059011) en http://creativecommons.org/publicdomain/zero/1.0/ 2017-03-28 16:45:37 http://collections.peabody.yale.edu/search/Record/YPM-VP-059011 Yale Peabody Museum of Natural History NA PhysicalObject NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA YPM VP 059011 Mammalia NA VP NA North America NA NA USA NA Coordinate data unavailable NA 10 NA NA Eocene Tertiary NA NA 1963-06-10 NA NA NA Ischyromyidae NA 63-188 NA NA NA Willwood Fm Paramys NA NA NA Animalia; Chordata; Vertebrata; Amniota; Mammalia; Theriiformes—–Theria-Placentalia-Epitheria; Preptotheria-Anagalida-Simplicidentata; Rodentia; Sciuromorpha; Ischyromyoidea; Ischyromyidae; Paramyinae North America; USA; Wyoming NA NA NA NA NA 1 YPM NA NA NA Animalia NA NA NA NA NA NA NA NA NA NA 6 NA NA NA NA ICZN NA NA urn:uuid:004bd82e-de14-4917-8d21-ab9dcb39b2fb jaw fragment with tooth, 2 jaw fragments with incisors, 1 incisor, 1 incisor fragment; VP number 59011; lot count 1 Rodentia NA NA NA NA NA NA NA YPM NA Chordata NA Paramys NA Yale 1963 Wyoming (Willwood) Expedition, Yale 1963 Wyoming (Willwood) Expedition NA NA NA NA NA NA Paramys Leidy, 1871 NA NA NA Wyoming NA Genus Fossils, Rocks and Minerals: Fossils - Vertebrates NA NA NA NA NA NA NA NA NA NA NA squirrels; rodents; mammals; vertebrates; chordates; animals NA 1963 NA NA NA NA NA
07da9e61-2e81-4eb4-b7c1-74c1cac96630 NA NA Open Access, http://creativecommons.org/publicdomain/zero/1.0/; see Yale Peabody policies at: http://hdl.handle.net/10079/8931zqj Deinonychus antirrhopus (YPM VP 059012) en http://creativecommons.org/publicdomain/zero/1.0/ 2017-03-22 15:31:23 http://collections.peabody.yale.edu/search/Record/YPM-VP-059012 Yale Peabody Museum of Natural History NA PhysicalObject NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA YPM VP 059012 Reptilia NA VP NA NA NA NA NA NA NA NA NA NA NA NA NA Dromaeosauridae NA NA NA NA Deinonychus NA NA NA Animalia; Chordata; Vertebrata; Amniota; Reptilia; Diapsida; Archosauria; Saurischia; Theropoda; Dromaeosauridae NA NA NA NA NA 1 YPM NA NA NA Animalia NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA ICZN NA NA urn:uuid:8a42b32c-5934-43c6-8c61-be863403fc55 Composite left manus for Teaching Collection, see notes for list of elements; VP number 59012; lot count 1 Saurischia NA NA NA NA NA NA NA YPM NA Chordata NA cast Deinonychus antirrhopus NA NA NA NA NA NA NA Deinonychus antirrhopus Ostrom, 1969 NA NA antirrhopus NA NA Species Fossils, Rocks and Minerals: Fossils - Vertebrates NA NA NA NA NA NA NA NA NA NA NA raptors; dinosaurs; Reptiles; vertebrates; chordates; animals NA NA NA NA NA NA NA
05698b27-d162-4628-92e9-3153ff67a6ab NA NA Open Access, http://creativecommons.org/publicdomain/zero/1.0/; see Yale Peabody policies at: http://hdl.handle.net/10079/8931zqj Rodentia (YPM VP 059002) en http://creativecommons.org/publicdomain/zero/1.0/ 2017-03-28 16:17:01 http://collections.peabody.yale.edu/search/Record/YPM-VP-059002 Yale Peabody Museum of Natural History NA PhysicalObject NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA YPM VP 059002 Mammalia NA VP NA North America NA NA USA NA Big Horn County Coordinate data unavailable NA 18 NA NA Eocene Tertiary NA NA 1963-06-18 NA NA NA NA 370 NA NA NA Willwood Fm NA NA NA Animalia; Chordata; Vertebrata; Amniota; Mammalia; Theriiformes—–Theria-Placentalia-Epitheria; Preptotheria-Anagalida-Simplicidentata; Rodentia North America; USA; Wyoming; Big Horn County NA NA NA NA NA 1 YPM NA NA NA Animalia NA NA NA NA NA NA NA NA NA NA 6 NA NA NA NA ICZN NA NA urn:uuid:e3c74dca-f079-4078-90f0-299b3208cf18 jaw fragment with teeth; VP number 59002; lot count 1 Rodentia NA NA NA NA NA NA NA YPM NA Chordata NA Rodentia NA Yale 1963 Wyoming (Willwood) Expedition, Yale 1963 Wyoming (Willwood) Expedition NA NA NA NA NA NA Rodentia Bowdich, 1821 NA NA NA Wyoming NA Order Fossils, Rocks and Minerals: Fossils - Vertebrates NA NA NA NA NA NA NA NA NA NA NA rodents; mammals; vertebrates; chordates; animals NA 1963 NA NA NA NA NA
8c826bb5-ba30-4357-b119-18b24541a02c NA NA NA http://ucmpdb.berkeley.edu/cgi/ucmp_query2?spec_id=V285838&one=T http://vertnet.org/resources/norms.html NA NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA 285838 Reptilia NA V NA North America NA NA United States NA Apache County NA NA NA NA Mesozoic Late Triassic Mesozoic Triassic NA NA NA NA NA Stagonolepididae NA NA NA NA Chinle Acaenosuchus -7308 NA NA NA NA Late Triassic NA NA NA NA Location data available to qualified researchers on request. UCMP NA NA NA Animalia NA Mesozoic Late Triassic Mesozoic Triassic NA Saint Johns 2 NA -7308 NA Late Triassic NA NA NA NA NA NA NA NA NA NA NA ICZN NA NA urn:catalog:UCMP:V:285838 Aetosauria NA NA NA NA NA NA NA NA NA transverse process and osteoderms tip NA NA NA NA NA NA NA Acaenosuchus geoffreyi NA NA geoffreyi NA Arizona NA species NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
f26beca1-32ab-4c87-bc70-57af70aac9c8 NA NA NA http://ucmpdb.berkeley.edu/cgi/ucmp_query2?spec_id=V285929&one=T http://vertnet.org/resources/norms.html NA NA NA NA NA NA NA NA NA NA NA FossilSpecimen NA NA 285929 Amphibia NA V NA North America NA NA United States NA Apache County NA NA NA NA Mesozoic Late Triassic Mesozoic Triassic NA NA NA NA NA Metoposauridae NA NA NA NA Chinle -7308 NA NA NA NA Late Triassic NA NA NA NA Location data available to qualified researchers on request. UCMP NA NA NA Animalia NA Mesozoic Late Triassic Mesozoic Triassic NA Saint Johns 2 NA -7308 NA Late Triassic NA NA NA NA NA NA NA NA NA NA NA ICZN NA NA urn:catalog:UCMP:V:285929 Temnospondyli NA NA NA NA NA NA NA NA NA skull fragment NA Camp, C.L. NA NA NA NA NA NA Metoposauridae NA NA NA Arizona NA family NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

   

Example of what the data look like after being processed by iDigBio

 

coreid idigbio:associatedsequences idigbio:barcodeValue dwc:basisOfRecord dwc:bed gbif:canonicalName dwc:catalogNumber dwc:class dwc:collectionCode dwc:collectionID idigbio:collectionName dwc:recordedBy dwc:vernacularName idigbio:commonnames dwc:continent dwc:coordinateUncertaintyInMeters dwc:country idigbio:isoCountryCode dwc:county idigbio:eventDate idigbio:dateModified idigbio:dataQualityScore dwc:earliestAgeOrLowestStage dwc:earliestEonOrLowestEonothem dwc:earliestEpochOrLowestSeries dwc:earliestEraOrLowestErathem dwc:earliestPeriodOrLowestSystem idigbio:etag dwc:eventDate dwc:family dwc:fieldNumber idigbio:flags dwc:formation dwc:genus dwc:geologicalContextID idigbio:geoPoint dwc:group idigbio:hasImage idigbio:hasMedia dwc:higherClassification dwc:highestBiostratigraphicZone dwc:individualCount dwc:infraspecificEpithet dwc:institutionCode dwc:institutionID idigbio:institutionName dwc:kingdom dwc:latestAgeOrHighestStage dwc:latestEonOrHighestEonothem dwc:latestEpochOrHighestSeries dwc:latestEraOrHighestErathem dwc:latestPeriodOrHighestSystem dwc:lithostratigraphicTerms dwc:locality dwc:lowestBiostratigraphicZone dwc:maximumDepthInMeters dwc:maximumElevationInMeters idigbio:mediarecords dwc:member dwc:minimumDepthInMeters dwc:minimumElevationInMeters dwc:municipality dwc:occurrenceID dwc:order dwc:phylum idigbio:recordIds dwc:recordNumber idigbio:recordset dwc:scientificName dwc:specificEpithet dwc:startDayOfYear dwc:stateProvince dwc:taxonID dwc:taxonomicStatus dwc:taxonRank dwc:typeStatus idigbio:uuid dwc:verbatimEventDate dwc:verbatimLocality idigbio:version dwc:waterBody
3ee2f19f-046f-4c52-ab31-f9b42ed12a89 NA NA fossilspecimen NA axis lzzz/4510 mammalia fossil NA NA asia NA indonesia idn NA 2017-06-28 13:15:02 0.1594203 82681e6ba5c73210b7791c287c81de2850d670e6 cervidae [“dwc_taxonrank_added”, “dwc_phylum_added”, “dwc_scientificnameauthorship_added”, “dwc_taxonomicstatus_added”, “gbif_genericname_added”, “dwc_datasetid_added”, “dwc_parentnameusageid_added”, “dwc_taxonid_added”, “idigbio_isocountrycode_added”, “gbif_canonicalname_added”, “gbif_taxon_corrected”, “dwc_class_added”, “dwc_kingdom_added”] axis FALSE FALSE NA mzlu NA NA animalia sangiran NA NA NA NA mzlu:fossil:lzzz/4510 artiodactyla chordata [“858a7761-82a5-47df-8e8a-dbc8806cf424\mzlu:fossil:lzzz/4510”] NA 858a7761-82a5-47df-8e8a-dbc8806cf424 axis sp NA java 8535967 doubtful genus 3ee2f19f-046f-4c52-ab31-f9b42ed12a89 NA NA NA NA
9702a3d1-810a-4f9a-b9e9-7bc04f54f7f4 NA NA fossilspecimen NA paramys ypm vp 059011 mammalia vp NA NA yale 1963 wyoming (willwood) expedition, yale 1963 wyoming (willwood) expedition squirrels; rodents; mammals; vertebrates; chordates; animals [“squirrels; rodents; mammals; vertebrates; chordates; animals”] north america NA united states usa 1963-06-10 2017-12-06 14:53:16 0.3478261 eocene tertiary ab063f634bbd55f12925d73fbafebaadc9cae97d 1963-06-10 ischyromyidae 63-188 [“dwc_country_replaced”, “idigbio_isocountrycode_added”, “gbif_canonicalname_added”, “dwc_taxonomicstatus_added”, “gbif_genericname_added”, “dwc_datasetid_added”, “gbif_taxon_corrected”, “dwc_parentnameusageid_added”, “dwc_taxonid_added”] willwood fm paramys FALSE FALSE animalia; chordata; vertebrata; amniota; mammalia; theriiformes—–theria-placentalia-epitheria; preptotheria-anagalida-simplicidentata; rodentia; sciuromorpha; ischyromyoidea; ischyromyidae; paramyinae 1 ypm NA NA animalia NA NA NA NA urn:uuid:004bd82e-de14-4917-8d21-ab9dcb39b2fb rodentia chordata [“0220907a-0463-4ae0-8a0b-77f5e80fff40\urn:uuid:004bd82e-de14-4917-8d21-ab9dcb39b2fb”] NA 0220907a-0463-4ae0-8a0b-77f5e80fff40 paramys 161 wyoming 4828164 accepted genus 9702a3d1-810a-4f9a-b9e9-7bc04f54f7f4 NA NA NA NA
07da9e61-2e81-4eb4-b7c1-74c1cac96630 NA NA fossilspecimen NA deinonychus antirrhopus ypm vp 059012 reptilia vp NA NA raptors; dinosaurs; reptiles; vertebrates; chordates; animals [“raptors; dinosaurs; Reptiles; vertebrates; chordates; animals”] NA NA 2017-12-06 14:53:16 0.1884058 27d07c44df90c0d9d64f5645bf540cb2d69bc4f3 dromaeosauridae [“gbif_canonicalname_added”, “dwc_taxonomicstatus_added”, “gbif_genericname_added”, “dwc_datasetid_added”, “gbif_taxon_corrected”, “dwc_parentnameusageid_added”, “dwc_taxonid_added”, “gbif_vernacularname_added”, “dwc_scientificnameauthorship_replaced”] deinonychus FALSE FALSE animalia; chordata; vertebrata; amniota; reptilia; diapsida; archosauria; saurischia; theropoda; dromaeosauridae 1 ypm NA NA animalia NA NA NA NA urn:uuid:8a42b32c-5934-43c6-8c61-be863403fc55 saurischia chordata [“0220907a-0463-4ae0-8a0b-77f5e80fff40\urn:uuid:8a42b32c-5934-43c6-8c61-be863403fc55”] NA 0220907a-0463-4ae0-8a0b-77f5e80fff40 deinonychus antirrhopus antirrhopus NA 4966355 accepted species 07da9e61-2e81-4eb4-b7c1-74c1cac96630 NA NA NA NA
05698b27-d162-4628-92e9-3153ff67a6ab NA NA fossilspecimen NA ypm vp 059002 mammalia vp NA NA yale 1963 wyoming (willwood) expedition, yale 1963 wyoming (willwood) expedition rodents; mammals; vertebrates; chordates; animals [“rodents; mammals; vertebrates; chordates; animals”] north america NA united states usa big horn county 1963-06-18 2017-12-06 14:53:16 0.3768116 eocene tertiary 1edf097413b16fc09bb889804599f2b4cc6a37bd 1963-06-18 370 [“dwc_country_replaced”, “idigbio_isocountrycode_added”] willwood fm FALSE FALSE animalia; chordata; vertebrata; amniota; mammalia; theriiformes—–theria-placentalia-epitheria; preptotheria-anagalida-simplicidentata; rodentia 1 ypm NA NA animalia NA NA NA NA urn:uuid:e3c74dca-f079-4078-90f0-299b3208cf18 rodentia chordata [“0220907a-0463-4ae0-8a0b-77f5e80fff40\urn:uuid:e3c74dca-f079-4078-90f0-299b3208cf18”] NA 0220907a-0463-4ae0-8a0b-77f5e80fff40 rodentia 169 wyoming NA order 05698b27-d162-4628-92e9-3153ff67a6ab NA NA NA NA
8c826bb5-ba30-4357-b119-18b24541a02c NA NA fossilspecimen NA acaenasuchus geoffreyi 285838 reptilia v NA NA north america NA united states usa apache county NA 2017-07-10 22:25:29 0.3913043 mesozoic late triassic mesozoic triassic 5425ef28de328df8942f7bd5bc44c5395afd9985 stagonolepididae [“dwc_phylum_added”, “dwc_scientificnameauthorship_added”, “dwc_taxonomicstatus_added”, “gbif_genericname_added”, “dwc_datasetid_added”, “gbif_taxon_corrected”, “dwc_taxonid_added”, “idigbio_isocountrycode_added”, “gbif_canonicalname_added”, “dwc_parentnameusageid_added”, “dwc_genus_replaced”] chinle acaenasuchus -7308 FALSE FALSE late triassic NA ucmp NA NA animalia mesozoic late triassic mesozoic triassic saint johns 2 late triassic NA NA NA NA urn:catalog:ucmp:v:285838 aetosauria chordata [“5ab348ab-439a-4697-925c-d6abe0c09b92\urn:catalog:ucmp:v:285838”] NA 5ab348ab-439a-4697-925c-d6abe0c09b92 acaenosuchus geoffreyi geoffreyi NA arizona 4967763 accepted species 8c826bb5-ba30-4357-b119-18b24541a02c NA NA NA NA
f26beca1-32ab-4c87-bc70-57af70aac9c8 NA NA fossilspecimen NA 285929 amphibia v NA NA camp, c.l. north america NA united states usa apache county NA 2017-07-10 22:25:29 0.4492754 mesozoic late triassic mesozoic triassic 2ad7cfef0c826acd4d4732229ebb9c998c276c4e metoposauridae [“idigbio_isocountrycode_added”] chinle -7308 FALSE FALSE late triassic NA ucmp NA NA animalia mesozoic late triassic mesozoic triassic saint johns 2 late triassic NA NA NA NA urn:catalog:ucmp:v:285929 temnospondyli [“5ab348ab-439a-4697-925c-d6abe0c09b92\urn:catalog:ucmp:v:285929”] NA 5ab348ab-439a-4697-925c-d6abe0c09b92 metoposauridae NA arizona NA family f26beca1-32ab-4c87-bc70-57af70aac9c8 NA NA NA NA

1. How prevalent is georeferencing in our data??


Of these records, 42.2% are georeferenced. The majority of this georeferencing has been done in the recent past.

# Collate data about when records were georeferenced, based on data provided
# in the column `data.dwc:georeferencedDate`
georef_timeline <- raw_idb %>% 
  select(`dwc:georeferencedDate`) %>% 
  filter(!is.na(`dwc:georeferencedDate`) & `dwc:georeferencedDate` != "") %>%
  mutate(date = lubridate::as_date(`dwc:georeferencedDate`)) %>% 
  mutate(year1 = lubridate::year(date)) %>% 
  mutate(year2 = case_when(is.na(year1) ~ `dwc:georeferencedDate`)) %>% 
  unite(year, c(year1, year2), sep = " ", na.rm = TRUE) %>% 
  mutate(year = str_trim(str_replace(year, "NA", ""))) %>% 
  group_by(year) %>% 
  tally() %>%
  filter(nchar(year) == 4 & year > 2000 & year < 2021)

# Plot `georef_timeline`
 ggplot(georef_timeline, aes(x = year, y = n)) + 
   geom_bar(stat = "identity", fill = "steelblue") +
   ggtitle("Timeline of when paleo records on iDigBio were georeferenced") +
   xlab("Year") +
   ylab("Number of records")


2. What standard terms are in use?


At the recordset level

Data for the figure below were downloaded from GBIF on 2020-04-23 using the query: basisofrecord = “fossil” (doi.org/10.15468/dl.7nnj39). This dataset includes 1,1665,493 specimen records provided by >90 collections.

Presence/absence of georeferencing terms in use by paleo collections providing data to GBIF

 

In the figure above, data providers are columns and Darwin Core fields are rows. Green indicates the presence of a particular Darwin Core field in data published by a provider, though the fact that a field is present does not necessarily mean that there are values in it. The takeaway from this figure is that only three standard Darwin Core fields related to georeferencing are in use by the majority of data providers. The top fields used by paleo collections providing data to GBIF are:

  1. dwc:decimalLatitude and dwc:decimalLongitude (in use by 78% of data providers)
  2. dwc:geodeticDatum (in use by 70% of data providers)
  3. dwc:coordinateUncertaintyInMeters (in use by 57% of data providers)
  4. dwc:georeferenceRemarks (in use by 48% of data providers)
  5. dwc:georeferencedBy (in use by 42% of data providers)

At the record level

Data for the figure below is from the iDigBio dataset introduced at the beginning of this document.

# Summarize frequency of metadata for georeference data
perc_geodeticDatum <- raw_idb %>% 
  select(`dwc:geodeticDatum`) %>% 
  filter(!is.na(`dwc:geodeticDatum`) & `dwc:geodeticDatum` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_coordinateUncertaintyInMeters <- raw_idb %>% 
  select(`dwc:coordinateUncertaintyInMeters`) %>% 
  filter(!is.na(`dwc:coordinateUncertaintyInMeters`) & 
           `dwc:coordinateUncertaintyInMeters` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_coordinatePrecision <- raw_idb %>% 
  select(`dwc:coordinatePrecision`) %>% 
  filter(!is.na(`dwc:coordinatePrecision`) & `dwc:coordinatePrecision` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferencedBy <- raw_idb %>% 
  select(`dwc:georeferencedBy`) %>% 
  filter(!is.na(`dwc:georeferencedBy`) & `dwc:georeferencedBy` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferencedDate <- raw_idb %>% 
  select(`dwc:georeferencedDate`) %>% 
  filter(!is.na(`dwc:georeferencedDate`) & `dwc:georeferencedDate` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferenceProtocol <- raw_idb %>% 
  select(`dwc:georeferenceProtocol`) %>% 
  filter(!is.na(`dwc:georeferenceProtocol`) & `dwc:georeferenceProtocol` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferenceSources <- raw_idb %>% 
  select(`dwc:georeferenceSources`) %>% 
  filter(!is.na(`dwc:georeferenceSources`) & `dwc:georeferenceSources` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferenceVerificationStatus <- raw_idb %>% 
  select(`dwc:georeferenceVerificationStatus`) %>% 
  filter(!is.na(`dwc:georeferenceVerificationStatus`) & 
           `dwc:georeferenceVerificationStatus` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_georeferenceRemarks <- raw_idb %>% 
  select(`dwc:georeferenceRemarks`) %>% 
  filter(!is.na(`dwc:georeferenceRemarks`) & `dwc:georeferenceRemarks` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_dataGeneralizations <- raw_idb %>% 
  select(`dwc:dataGeneralizations`) %>% 
  filter(!is.na(`dwc:dataGeneralizations`) & `dwc:dataGeneralizations` != "") %>% 
  nrow()

# Summarize frequency of metadata for georeference data
perc_informationWithheld <- raw_idb %>% 
  select(`dwc:informationWithheld`) %>% 
  filter(!is.na(`dwc:informationWithheld`) & `dwc:informationWithheld` != "") %>% 
  nrow()

# Collate summary data into a single data frame
percSummary <- tribble(
  ~field, 
  ~yes, 
  ~no,
  "geodeticDatum", 
  perc_geodeticDatum, 
  sum(records_total-perc_geodeticDatum),
  "coordinateUncertaintyInMeters", 
  perc_coordinateUncertaintyInMeters, 
  sum(records_total-perc_coordinateUncertaintyInMeters),
  "coordinatePrecision", 
  perc_coordinatePrecision, 
  sum(records_total-perc_coordinatePrecision),
  "georeferencedBy", 
  perc_georeferencedBy, 
  sum(records_total-perc_georeferencedBy),
  "georeferencedDate", 
  perc_georeferencedDate, 
  sum(records_total-perc_georeferencedDate),
  "georeferenceProtocol", 
  perc_georeferenceProtocol, 
  sum(records_total-perc_georeferenceProtocol),
  "georeferenceSources", 
  perc_georeferenceSources, 
  sum(records_total-perc_georeferenceSources),
  "georeferenceVerificationStatus", 
  perc_georeferenceVerificationStatus, 
  sum(records_total-perc_georeferenceVerificationStatus),
  "georeferenceRemarks", 
  perc_georeferenceRemarks, 
  sum(records_total-perc_georeferenceRemarks),
  "dataGeneralizations", 
  perc_dataGeneralizations, 
  sum(records_total-perc_dataGeneralizations),
  "informationWithheld", 
  perc_informationWithheld, 
  sum(records_total-perc_informationWithheld))

# Plot `percSummary`
percSummary_plot <- percSummary %>% 
  pivot_longer(-field, names_to = "inUse", values_to = "count") %>%
  group_by(field) %>% 
  mutate(perc = round(count/sum(count)*100)) %>%
  mutate(ypos = cumsum(perc)- 0.5*perc ) %>% 
  ggplot(aes(x = 0, y = count, fill = inUse)) +
  geom_bar(stat = "identity", color = "black") +
  coord_polar(theta = "y") +
  facet_wrap(~field) +
  labs(title = "Percentage of records with values in georeference metadata fields",
       fill = "In use?") +
  theme_void() +
  theme(plot.title = element_text(margin = margin(10, 0, 10, 0))) +
  scale_fill_manual(values = c("white", "steelblue"))

# Save `percSummary_plot` as a file
ggsave("percSummary_plot.png", width = 9, height = 6, units = "in")


3. How are standard terms being used?


Geodetic Datum

# Determine unique values for `dwc:geodeticDatum`
geodeticDatum <- raw_idb %>% 
  group_by(`dwc:geodeticDatum`) %>% 
  filter(!is.na(`dwc:geodeticDatum`) & `dwc:geodeticDatum` != "") %>% 
  tally() %>% 
  arrange(desc(n)) %>% 
  rename(value = `dwc:geodeticDatum`)

# Generate wordcloud based on frequency of values
wordcloud(words = geodeticDatum$value, 
          freq = geodeticDatum$n, 
          min.freq = 1,
          max.words = 200,
          random.order = FALSE,
          rot.per = 0.25,
          colors = brewer.pal(8, "Dark2"))

Unique values present in the dwc:geodeticDatum field

 

value n
WGS84 1957318
WGS 84 65246
WGS 1984 56442
EPSG:4326 56029
NAD27 49588
NAD 27 19150
not recorded (forced WGS84) 11489
WGS84/NAD83 6848
NAD 1927 4772
NAD83 2528
unknown 2064
PRP_M 310
GDA94 301
WGs84 189
WGS 179
WGS1984 168
ENT.30851 141
Unknown 106
WGS72 99
IPE.05223 98
IPB.09111 65
IPE.05426 54
IPE.06762 46
IPC.01379 45
NAD 1983 42
IPE.04435 39
IPB.09112 36
IPD.00959 36
IZS.06861 36
IPB.09171 34
IZS.12943 31
IPB.09236 27
IPE.06925 27
IZS.12947 26
h 23
IPE.06528 23
IPE.06979 23
IPB.09166 21
IPE.06796 21
IPE.09565 21
IZS.12954 21
IPD.00967 20
IPB.09156 19
IPE.04593 19
IPB.09145 18
IPB.09239 17
IPB.09133 16
IZS.01535 15
IZS.04567 15
ICH.02847 14
IZS.12958 14
WGA84 14
IPD.07947 13
IZS.12944 13
NAD1983 13
IPB.09132 12
IPD.06427 12
IZS.12945 12
IZS.25699 12
30.51247 11
IZS.17594 11
IZS.24653 11
IPD.00963 10
IPD.09482 10
IPE.07230 10
IPE.09624 10
IZS.01569 10
IZS.12942 10
ORN.10655 10
Google Earth Estimate 9
IPA.06853 9
IPD.00962 9
IPD.01015 9
IPE.06819 9
IPB.02344 8
IPB.09231 8
IPE.06934 8
IZS.12955 8
37.437467 7
IPE.01374 7
IZS.01534 7
IZS.12951 7
IZS.25702 7
IPB.02018 6
IPB.09248 6
IPD.00971 6
IPD.01568 6
IPE.07181 6
IPE.07551 6
NWS84 6
PB.06184 6
Google 5
IPB.02010 5
IPB.02015 5
IPB.09247 5
IPB.09283 5
IPD.00965 5
IZS.25701 5
PB.05755 5
IPB.09102 4
IPB.09237 4
IPE.06664 4
IPE.07272 4
IZS.15214 4
PB.05117 4
PB.05140 4
GeoBasis-DE/BKG 3
IPB.01850 3
IPB.09154 3
IPD.01026 3
IPE.06617 3
IPE.06636 3
IZS.01493 3
IZS.01565 3
IZS.24599 3
IZS.29006 3
IZS.30720 3
N/A 3
NAD27_CONUS 3
-5.83322 2
IPA.06877 2
IPB.01876 2
IPB.05015 2
IPB.09113 2
IPB.09279 2
IPC.01689 2
IPE.05421 2
IPE.06161 2
IPE.06644 2
IPE.07177 2
IPE.07229 2
IPE.07313 2
IPE.07400 2
IPF.00065 2
IPF.04346 2
IZS.01553 2
IZS.08080 2
IZS.12949 2
IZS.12956 2
IZS.12957 2
IZS.15520 2
IZS.16785 2
ORN.01302 2
ORN.10656 2
VP.02813 2
32.54572 1
34.101905 1
48.8444 1
ENT.14228 1
ENT.24683 1
GEOBases-DE 1
GeoBasis-DE 1
IPB.01853 1
IPB.01886 1
IPB.02005 1
IPB.02377 1
IPB.05107 1
IPB.09136 1
IPB.09225 1
IPB.09244 1
IPC.08142 1
IPD.00888 1
IPD.00960 1
IPD.00966 1
IPD.00972 1
IPD.00975 1
IPD.01016 1
IPD.01019 1
IPD.01029 1
IPD.02127 1
IPD.04669 1
IPD.08308 1
IPD.08926 1
IPE.03174 1
IPE.04642 1
IPE.06162 1
IPE.06496 1
IPE.06584 1
IPE.06618 1
IPE.06632 1
IPE.06691 1
IPE.06693 1
IPE.06702 1
IPE.06772 1
IPE.06800 1
IPE.06967 1
IPE.07020 1
IPE.07144 1
IPE.07145 1
IPE.07146 1
IPE.07147 1
IPE.07148 1
IPE.07149 1
IPE.07150 1
IPE.07276 1
IPE.07402 1
IZS.01536 1
IZS.12946 1
IZS.12948 1
IZS.12950 1
IZS.12959 1
IZS.16784 1
IZS.16811 1
IZS.17285 1
IZS.17596 1
IZS.26967 1
IZS.28749 1
MIN.06036 1
not recorded 1
PB.05312 1
PB.05670 1
WGS83 1

 


Georeference Protocol

# Determine unique values for `dwc:georeferenceProtocol`
georeferenceProtocol <- raw_idb %>% 
  group_by(`dwc:georeferenceProtocol`) %>% 
  filter(!is.na(`dwc:georeferenceProtocol`) & `dwc:georeferenceProtocol` != "") %>% 
  tally() %>% 
  arrange(desc(n)) %>% 
  rename(value = `dwc:georeferenceProtocol`)

# Generate wordcloud based on frequency of values
wordcloud(words = georeferenceProtocol$value, 
          freq = georeferenceProtocol$n, 
          min.freq = 1,
          max.words = 200,
          random.order = FALSE,
          rot.per = 0.25,
          colors = brewer.pal(8, "Dark2"))

Unique values present in the dwc:georeferenceProtocol field

 

value n
Georeferencing Quick Reference Guide Version 2012-10-02 408844
digital resource 358377
physical resource 105145
GEOLocate 101518
unspecified 23878
Georeferencing Quick Guide 23381
LACMIP georeferencing 2015-2018 16952
GBIF Best Practices, Quick Guide 11385
GBIF Best Practices; Quick Guide 11178
“Guide to Best Practices for Georeferencing”“, Chapman and Wieczorek” 10360
Georeferencing Quick Reference Guide 8514
MaNIS/HerpNet/ORNIS Georeferencing Guidelines, GBIF Best Practices 8024
LACMIP georeferencing 2019 6861
Georeferencing Quick Reference Guide Version 2012-10-08 4109
“Guide to Best Practices for Georeferencing”" (Chapman and Wieczorek, eds. 2006), Global Biodiversity Information Facility" 1523
Loran A 1284
GBIF Best Practices Quick Guide 1210
Quad Map 955
unknown 833
Batch georeferenced using Google Maps API 430
MaNIS/HerpNET/ORNIS Georeferencing Guidelines 394
Visual Or Radar 351
Guide to Best Practices for Georeferencing Chapman and Wieczorek, eds. 2006, Global Biodiversity Information Facility 124
Not provided by collector 111
Quad Map,Creswell,N.C. 109
Sat Nav 109
Unknown 96
Quad Map,Columbia East 76
Quad Map,Scotia 76
GPS reading in field 64
Quad Map,Roper South 45
Raydist Station Signals 504+585 43
Quad Map,Frying Pan,N.C. 29
Dead Reckoning 28
GBIF Best Practics; Quick Guide 22
Quad Map,Creswell Se,N.C. 16
Quad Map,Fort Landing,N.C. 15
GBIF Best Practices; Quick Guide; Guidebook 14
Biogeomancer, Point Radius 13
Quad Map,Manteo 8
GBIF Best Practices; Quick Guide 1
Quad Map,Colombia East 1
unknown-migration 1

 


Georeference Sources

# DEtermine unique values for `dwc:georeferenceSources`
georeferenceSources <- raw_idb %>% 
  group_by(`dwc:georeferenceSources`) %>% 
  filter(!is.na(`dwc:georeferenceSources`) & `dwc:georeferenceSources` != "") %>% 
  tally() %>% 
  arrange(desc(n)) %>% 
  rename(value = `dwc:georeferenceSources`)

# Generate wordcloud based on frequency of values
wordcloud(words = georeferenceSources$value, 
          freq = georeferenceSources$n, 
          min.freq = 1,
          max.words = 200,
          random.order = FALSE,
          rot.per = 0.25,
          colors = brewer.pal(8, "Dark2"))

Unique values present in the dwc:georeferenceSources field

 

value n
GEOLocate 278069
GEOLocate batch georeferencing, 2019-06-10 84963
Google Earth 59756
GPS unit 51638
unspecified 51126
topographic map 38651
GeoLocate 30891
USGS National Map 12434
Topozone 11871
GeoLocate | Graphical Locater 10351
Google Maps, GeoLocate 9938
GeoLocate, Google Maps, Google Earth 8982
Canada Toporama 8502
USA TIGER 2014 Census 8088
BioGeomancer 8024
GEOLocate batch georeferencing, 2018-10-03 7958
GEOLocate batch georeferencing, 2019-01-23 6867
Geolocate 4392
VertNet 4357
Google Earth, topo map 2880
GeoLocate, Google Maps 1949
https://opencontext.org/subjects/B5F813A9-4273-4725-8885-80176BE5668E 1601
GeoLocate|Graphical Locater 1516
Trails.com 1340
GEOLocate batch georeferencing, 2019-07-08 1302
GeoLocate, Google Maps, Google Earth, Ohio Home Town Locator 965
GeoLocate, Google Earth 948
unknown 689
Biogeomancer 634
Google Earth, topo map, township and range 564
NEVP 471
Google Maps API 430
Manus Herp Error Calculator 365
Google Earth, locality card 317
Google Maps 316
“Clement and Brett, 2015” 314
field map 251
University of Florida 203
GEOLocate Web Application 183
Google Maps, GeoLocate, http://pubs.usgs.gov/pp/0137/report.pdf 160
GeoLocate, https://www.researchgate.net/profile/Om_N_Bhargava/publication/259406791_Cambrian_rocks_and_faunas_of_the_Wachi_La_Black_Mountain_Bhutan/links/0f3175323d99f9bab4000000.pdf 157
Google Maps, GeoLocate, fossilsites.com 150
“Stilwell et al, 2004” 146
GEOLocated 131
GoogleEarth 113
publication 99
GEOLocate; personal communicaion with Liz Nesbitt 97
GEOLocate; Google Earth 86
GeoLocate, http://www.geology.cz/bulletin/fulltext/1329_Fatka.pdf 76
GPS (iPhone) 64
Google Earth, township and range 57
Google Maps, GeoLocate, https://plus.google.com/105998946634526664102/about?gl=us&hl=en 53
GeoLocate, http://pubs.usgs.gov/circ/circ1182/pdf/14Retsof.pdf 51
Google Maps, GeoLocate, http://www.pcdl.lib.oh.us/preble/somers.htm 44
GeoLocate, 1900 Annual Report of the Geological Commission of South Africa pg 69 42
GeoLocate, http://www.calvertmarinemuseum.com/DocumentCenter/View/687 42
GeoLocate, http://www.townofleicester.org/?page_id=13 39
US Fish Commission 39
GeoLocate, http://ngmdb.usgs.gov/Geolex/UnitRefs/BellevueRefs_386.html 35
GeoLocate, Pamphlets on Biology Kofoid collection v 2621 pg 70 30
GeoLocate, http://www.indiana.edu/~paleoind/Labs/Field%20Trip%201%20-%20Tunnel%20Mill%20and%20Waldron%20Shale.pdf 24
GeoLocate, https://tshaonline.org/handbook/online/articles/hvmcl 24
Google Maps, GeoLocate, http://archive.org/stream/bulletinsofameri101108pale/bulletinsofameri101108pale_djvu.txt 24
GeoLocate, http://en.wikipedia.org/wiki/Windom,_New_York 23
GeoLocate, http://ny-livingstoncounty.civicplus.com/DocumentCenter/View/692 23
GeoLocate, http://palaios.sepmonline.org/content/22/3/325/F1.large.jpg 21
GeoLocate, Google Maps, Google Earth, US Home Town Locator 18
GeoLocate, Google Earth, Ohio Home Town Locator 17
Geolocate, http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1250&context=igsar pg 360 16
GeoLocate, http://segs.org/wp/wp-content/uploads/2010/01/SEGS-Guidebook-No-56.pdf 16
GEOLOcate 13
Schopf, K., Morris, P.. 1994. 13
GeoLocate, http://mczbase.mcz.harvard.edu/SpecimenResultsHTML.cfm?&ShowObservations=false&scientific_name=Zetillaenus%20wahlenbergianus&sciNameOper=LIKE 12
Google Maps, GeoLocate, Yellowpages 12
GeoLocate, http://www.fossilsites.com/STATES/NC.HTM 11
GeoLocate, http://www.mytopo.com/products/quad.cfm?code=o41079g2 11
GeoLocate, North American and European Stropheodontids: Their Morphology and Systematics pg 55 11
Google Maps, GeoLocate, http://www.cincinnati-transit.net/subway-section1.html 11
GeoLocate, http://collections.peabody.yale.edu/search/Record/YPM-IP-036146 10
GeoLocate, http://pubs.usgs.gov/pp/0158b/report.pdf pg 12 10
GeoLocate, http://articles.petoskeynews.com/2009-11-30/plant-site_24015680 9
GeoLocate, http://www.neighborhoodscout.com/md/cumberland/wolfe-mill/ 9
GeoLocate, https://en.wikipedia.org/wiki/Bohemia#/media/File:CZ-cleneni-Cechy-wl.png 9
GeoLocate, https://en.wikipedia.org/wiki/Deadman%27s_Island_(San_Pedro) 9
fallingrain.com 8
GeoLocate, Google Maps, http://www.mrlinfo.org/history/lostrichmond/starrpiano.htm 8
GeoLocate|Google Earth 8
GeoLocate, Google Maps, USGS, Wiki 7
GeoLocate, http://deepblue.lib.umich.edu/bitstream/handle/2027.42/48440/ID288.pdf;jsessionid=C0B3E1EC5487C5A919075D1E53A12436?sequence=2 7
GeoLocate, http://epa-sites.findthedata.com/l/583470/Union-Chapel-Mine 7
GeOLocate, http://mapsoffayettecountyiowa.weebly.com/uploads/2/7/3/9/2739712/2014_clermont_township_address_map.pdf 7
GeoLocate, Singh et al 2015 7
Google Maps, GeoLocate, http://upload.wikimedia.org/wikipedia/commons/c/cc/Ottawarivermap.png 7
Google Maps, GeoLocate, https://kuscholarworks.ku.edu/bitstream/handle/1808/3699/paleo.paper.031.pdf?sequence=1&isAllowed=y 7
GEOlocate 6
GeoLocate, http://newyork.hometownlocator.com/ny/erie/highland-on-the-lake.cfm 6
Google Maps, GeoLocate, http://data.usgs.gov/resources/2010/08/04_134517_UL_5035813_20100804.xml 6
specimen label 6
GeoLocate, http://ngmdb.usgs.gov/Geolex/UnitRefs/BurgenRefs_12447.html 5
GeoLocate, http://nz.geoview.info/rainy_creek,2183831 5
GeoLocate, http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&d=GRA19020610.2.13 5
GeoLocate, http://pubs.usgs.gov/pp/0406/report.pdf 5
GeoLocate, http://www.buffaloah.com/a/DCTNRY/mat/onan/, http://www.cyburbia.org/forums/showthread.php?t=48228 5
GeoLocate, http://www.jstor.org/stable/2992936?seq=1#page_scan_tab_contents 5
GeoLocate, http://www.summitpost.org/white-rock-mountain/688124 5
GeoLocate, https://books.google.com/books?id=cZD7jfb8S1sC&pg=PA33&lpg=PA33&dq=Marshalls+Mill+Arkona,+Ontario&source=bl&ots=dXZbYwb38v&sig=IlShVCgzMnukgWgjvHytUExEy14&hl=en&sa=X&ved=0CB0Q6AEwAGoVChMIoZTeobn8yAIVh6ceCh15XAZY#v=onepage&q=Marshalls%20Mill%20A 5
GeoLocate, https://en.wikipedia.org/wiki/Cheyenne_River#/media/File:CheyenneCourseWatershed1.png 5
GeoLocate, https://www.madisoncounty.ny.gov/sites/default/files/elections/Election%20DistrictsEaton.pdf 5
GeoLocate, pg 5 of http://research.myfwc.com/engine/download_redirection_process.asp?file=90lyons_1718.pdf&objid=22641&dltype=publication 5
GEOLoctae 5
Geolocate | Graphical Locater 4
GeoLocate, Google Earth, Ohio Home Town Locator, Wiki 4
GeoLocate, http://coloradogeologicalsurvey.org/apps/wateratlas/chapter6_2page1.html 4
GeoLocate, http://discover.odai.yale.edu/ydc/Record/3809613 4
GeoLocate, http://www.newspapers.com/newspage/8090595/, http://www.brumm.com/genealogy/getperson.php?personID=I42854&tree=Everyone&PHPSESSID=4def63b3b2c56c130cba6f9e455ec3d1, http://cessfordcontstructionia.com/ 4
GeoLocate, http://www.psjournals.org/doi/abs/10.1666/10-012.1 4
Geolocate, https://paleobiodb.org/cgi-bin/bridge.pl?a=basicCollectionSearch&collection_no=64664 4
GeoLocate, Pamphlets on Biology Kofoid collection v 2621 p 70 4
GEOLocate, topographic map 4
GeoLocate, Williams 1907 pg 94 4
GEOLocate; map with specimens 4
Google Earth, Geologic Map 4
Google Maps, GeoLocate, Brenda’s knowledge 4
Google Maps, GeoLocate, http://www.websitewiz.com/genealogy/pdf/pl_newsom_mill.pdf 4
Google Maps, GeoLocate, http://www.yelp.com/biz/barrett-paving-materials-inc-sylvania 4
Topozone.com 4
wikipedia.com 4
GeoLocate, Google Earth, Wiki 3
GeoLocate, Google Maps, http://kb.osu.edu/rest/bitstreams/190351/retrieve 3
GeoLocate, http://digital.lib.uiowa.edu/cdm/ref/collection/atlases/id/1237 3
GeoLocate, http://en.wikipedia.org/wiki/Alabama_River#/media/File:MobileAlabamaCoosa3.png 3
GeoLocate, http://mining.ubc.ca/files/2014/01/geology.jpg 3
GeoLocate, http://www.academia.edu/2379916/The_Hancock_County_tetrapod_locality_A_new_Mississippian_Chesterian_wetlands_fauna_from_western_Kentucky_USA_ 3
GeoLocate, http://www.bridgeporttxhistorical.org/Images/Brick%20Plant/Map-1.jpg 3
GeoLocate, http://www.jgeosci.org/content/Fatka_1999.pdf 3
GeoLocate, http://www.northtexasfossils.com/weno.htm 3
GeoLocate, http://www.roadsideamerica.com/story/34053 3
GeoLocate, https://books.google.com/books?id=ahDiAAAAMAAJ&pg=PA303&lpg=PA303&dq=Rose+Quarry+petoskey+MI&source=bl&ots=ywcp0i0KdM&sig=ISoKSOTFuFEIun_ccJXNffyzDcg&hl=en&sa=X&ei=kvI4VYaWCpPpgwSg8IDoBg&ved=0CDoQ6AEwBQ#v=onepage&q=Rose%20Quarry%20petoskey%20MI 3
GeoLocate, https://ia902607.us.archive.org/14/items/cihm_06206/cihm_06206.pdf 3
GeoLocate, https://www.google.com/webhp?sourceid=chrome-instant&rlz=1C1WPZB_enUS610US610&ion=1&espv=2&ie=UTF-8#q=%22Montgomery+grant%22+Pennsylvania&start=0 3
GeoLocate, Keen and Benson 1944 p 14 3
GeoLocate, Weed 1892 The Laramie and the overlying Livingston formation in Montana 3
Google Maps, GeoLocate, “Historic Mills of Wayne and Boston Townships, Wayne County, Indiana”, Jennings 2005, IU 3
Google Maps, GeoLocate, http://www.daytontrolleys.net/drhs/daytonrailroadhistory.htm 3
BCGNIS downloaded April 2003/ SoftMap Oct 2003 (www.softmaptechnologies.com); degrees & minutes converted to dec lat/long for calculations; SoftMap uses same lat/long data 2
Datum not recorded 2
GeoLocate | Graphical Locater | Google 2
GeoLocate, Google Earth, http://www.coalcampusa.com/eastoh/cambridge/cambridge.htm 2
GeoLocate, Google Maps, http://en.wikipedia.org/wiki/Chouteau_Island 2
GeoLocate, Google Maps, http://www.geology.cz/bulletin/fulltext/bullgeosci200803281.pdf 2
GeoLocate, Google Maps, Ohio Home Town Locator 2
GeoLocate, http://boards.ancestry.com/thread.aspx?o=0&m=3064.3.1&p=localities.northam.usa.states.alabama.counties.monroe 2
GeoLocate, http://cdn.palass.org/publications/palaeontology/volume_7/pdf/vol7_part1_pp135-171.pdf 2
GeoLocate, http://en.wikipedia.org/wiki/Borodino,_New_York 2
GeoLocate, http://en.wikipedia.org/wiki/Williamsville,_New_York 2
GeoLocate, http://fultonhistory.com/newspapers%207/Livonia%20NY%20Gazette/Livonia%20NY%20Gazette%201972%20Grayscale/Livonia%20NY%20Gazette%201972%20Grayscale%20-%200260.pdf 2
GeoLocate, http://genealogytrails.com/ny/livingston/history.html 2
GeOLocate, http://oklahoma.hometownlocator.com/ok/pontotoc/franks.cfm 2
GeoLocate, http://pennsylvania.hometownlocator.com/maps/feature-map,ftc,1,fid,1210142,n,yankee%20bush%20hill.cfm 2
GeoLocate, http://pubs.usgs.gov/pp/0199a/report.pdf pg 38, http://www.fossilsites.com/STATES/MD.HTM 2
GeoLocate, http://www.buffaloah.com/a/DCTNRY/mat/onan/ 2
GeoLocate, http://www.ccofbuffalo.org/Golf.aspx 2
GeoLocate, http://www.croyde.ukfossils.co.uk/ 2
GeoLocate, http://www.ees.nmt.edu/outside/alumni/papers/1971t_bonem_rm.pdf 2
GeoLocate, http://www.faywest.com/casparis-mine/, http://www.faywest.com/chestnut-ridge/ 2
GeoLocate, http://www.formontana.net/montanamap.jpg 2
GeoLocate, http://www.mindat.org/maps.php?id=3872 2
GeoLocate, http://www.okladot.state.ok.us/hqdiv/p-r-div/maps/section-line/carter.pdf 2
GeoLocate, http://www.sirgeoffreysyme.com.au/contents/beachhouse.html 2
GeoLocate, http://www.trentonhistory.org/His/colonial.html 2
GeoLocate, https://archive.org/stream/cbarchive_131814_additionalnotesonthelilydaleli1894/additionalnotesonthelilydaleli1894_djvu.txt 2
GeoLocate, https://books.google.com/books?id=ahDiAAAAMAAJ&pg=PA303&dq=Rose+Quarry+petoskey+MI&hl=en&sa=X&ei=yO04Vd7-I4qzggTNyoDABg&ved=0CB4Q6AEwAA#v=onepage&q=Rose%20Quarry%20petoskey%20MI&f=false pg 303 2
GeoLocate, https://books.google.com/books?id=fWxUAAAAYAAJ&pg=PA24&lpg=PA24&dq=%22Chemung,+Iowa%22&source=bl&ots=r06gelPg94&sig=A37EzE7kcnnWnisbnyRZB2_cDNk&hl=en&sa=X&ei=VodkVdunJY24oQSWmoHQBg&ved=0CCcQ6AEwAg#v=onepage&q=%22Chemung%2C%20Iowa%22&f=false pg 2
Geolocate, https://en.wikipedia.org/wiki/Graniterock 2
GeoLocate, https://en.wikipedia.org/wiki/Pentz,_California 2
GeOLocate, https://en.wikipedia.org/wiki/Trans-Pecos#/media/File:TransPecosTexas.svg 2
GeOLocate, https://lostkscommunities.omeka.net/items/show/28 2
GeoLocate, https://tshaonline.org/handbook/online/articles/hvb33 2
GeoLocate, https://tshaonline.org/handbook/online/articles/rkh03 2
GeoLocate, https://www.madisoncounty.ny.gov/sites/default/files/elections/Election%20DistrictsLenox.pdf 2
GeoLocate, p69 Geological Survey of Canada Paper 73-02 2
GeoLocate,http://archives.datapages.com/data/rmag/RatonBasin56/briggs.htm 2
GEOLocate; Topographic Map 2
GNIS latlong download Sep 08 for placename, some adjusted in BioGeomancer, if offset, calculated air mi from placename latlong 2
Google Maps, GeoLocate, “Mississippian formations of western Kentucky” By Charles Butts, Kentucky Geological Survey, Geological Survey, 1917 2
Google Maps, GeoLocate, http://geonames.usgs.gov/apex/f?p=gnispq:3:0::NO::P3_FID:2569444 2
Google Maps, GeoLocate, http://parks.ohiodnr.gov/Portals/parks/PDFs/parks/Maps/Hueston_Woods/huestonwoodsparkmap.pdf 2
Google Maps, GeoLocate, http://www.cincinnatimemory.org/cgi-bin/library?e=d-000-00---0greaterc--00-0-0--0prompt-10---4------0-1l--1-en-50---20-about---00031-001-1-0utfZz-8-00&a=d&c=greaterc&cl=CL2.5&d=HASH011c26449302cb301c77d6a7 2
Google Maps, GeoLocate, http://www.findagrave.com/cgi-bin/fg.cgi?page=crMap&CRid=238163 2
Google Maps, GeoLocate, http://www.richmondindiana.gov/Assets/Departments/Engineering/MAPS/CURRENT+STREET+GUIDE.pdf 2
mindat.org 2
UK Ordnance Survey 2
USGS GNIS website, http://geonames.usgs.gov/pls/gnis/web_query.gnis_web_query_form 2
Bedrock Geologic Map of Vermont 1
GeoLocate | Google Earth 1
GeoLocate, 1938 Lexicon of Geologic Names of the United States pg 1425 1
GeoLocate, Annual Report of the Geological Commission of South Africa 1904 pg 275 1
GeoLocate, Bailey 1902 pg 138 1
GeoLocate, Collected Papers of Junius Henderson pg 173 1
GeoLocate, Google 1
GeoLocate, Google Maps, Google Earth, Kentucky Home Town Locator 1
GeoLocate, Google Maps, http://ohio.hometownlocator.com/maps/feature-map,ftc,2,fid,1054909,n,karch%20stone%20quarry.cfm 1
GeoLocate, Google Maps, http://www.goniat.org/showLocGeo.html?GeoId=geo00000000000000000000000001020 1
GeoLocate, Google Maps, https://caves.org/preserves/wells/mp-wells.shtml 1
GeoLocate, Google Maps, https://tshaonline.org/handbook/online/articles/htt02 1
GeoLocate, Gunnell 2001 pg 266 Eocene Biodiversity Unusual Occurrences and Rarely Sampled Habitats 1
GeoLocate, HS Williams 1907 pg 94 1
GeoLocate, http://4.bp.blogspot.com/-x-U5R_Cf5WY/UE0UCWXNXvI/AAAAAAAABkQ/humX5cB8QrE/s1600/Prague+Basin.jpg 1
GeoLocate, http://archive.org/stream/CUbiodiversity24905/CUbiodiversity24905_djvu.txt 1
GeoLocate, http://archives.datapages.com/data/bulletns/1949-52/data/pg/0034/0012/2350/2378a.htm 1
GeoLocate, http://blackcatmountain.com/hunton-rocks_270.html 1
GeoLocate, http://churches-and-cemeteries.com/index_pages/w.html 1
GeoLocate, http://crawdaddyoutdoors.com/wp-content/uploads/2013/04/CDO_Wapsipinicon_River_Water_Trail.pdf 1
GeoLocate, http://crete.decouverte.free.fr/RANDOHROMONASTIRIGorgeMiliMilon.html 1
GeoLocate, http://data2.archives.ca/e/e431/e010754848-v8.jpg 1
GeoLocate, http://digital.lib.uiowa.edu/cdm/fullbrowser/collection/atlases/id/1207/rv/compoundobject/cpd/1237 1
GeoLocate, http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll97/id/962 1
GeoLocate, http://economy.gov.sk.ca/adx/aspx/adxGetMedia.aspx?DocID=11849,11458,11455,11228,3385,5460,2936,Documents&MediaID=36693&Filename=Holmden.pdf 1
GeoLocate, http://en.wikipedia.org/wiki/Arbuckle_Mountains 1
GeoLocate, http://en.wikipedia.org/wiki/Aurelius,_New_York 1
GeoLocate, http://en.wikipedia.org/wiki/Caffeyville,_Missouri 1
GeoLocate, http://en.wikipedia.org/wiki/Litchfield,_New_York 1
GeoLocate, http://en.wikipedia.org/wiki/Oklahoma_State_Highway_5 1
GeoLocate, http://en.wikipedia.org/wiki/Prairie_Bluff,_Alabama 1
GeoLocate, http://en.wikipedia.org/wiki/Tombigbee_River#/media/File:Tombigbeerivermap.png 1
GeoLocate, http://f.tqn.com/y/geology/1/S/t/I/brazilmap.gif 1
GeoLocate, http://fossiilid.info/4486 1
GeoLocate, http://jncc.defra.gov.uk/pdf/gcrdb/GCRsiteaccount946.pdf 1
GeoLocate, http://lokality.geology.cz/956&l=e 1
GeoLocate, http://maps.niagararegion.ca/Metadata/md/DocumentUpload/2007-08-08%2014-44-38.pdf 1
GeoLocate, http://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=IADsr;0 1
GeoLocate, http://ngmdb.usgs.gov/Prodesc/proddesc_4365.htm 1
GeoLocate, http://nmita.iowa.uiowa.edu/paleo/FIMBY/bedrock%20map001.jpg 1
GeoLocate, http://northtexasfossils.com/kiamichi.htm 1
GeoLocate, http://paperspast.natlib.govt.nz/cgi-bin/paperspast?a=d&d=OAM19020610.2.2 1
GeoLocate, http://riviste.unimi.it/index.php/RIPS/article/view/6511/6437 1
GeoLocate, http://roadsidethoughts.com/ny/spring-brook-station-xx-erie-1890s.htm 1
GeoLocate, http://scholar.oxy.edu/cgi/viewcontent.cgi?article=1123&context=scas 1
GeoLocate, http://svpca.org/programme/programme.php?year=1993 1
GeoLocate, http://texas.hometownlocator.com/maps/feature-map,ftc,2,fid,1357122,n,evergreen%20cemetery.cfm 1
GeoLocate, http://tioga.nygenweb.net/factory.htm 1
GeoLocate, http://web.nhmus.hu/modules/Tar-Osleny/fragmenta/Frag14ContiSzabo.pdf 1
GeoLocate, http://www.anp.gov.br/brasil-rounds/round4/round4/workshop/restrito/ingles/Parnaiba_ing.pdf 1
GeoLocate, http://www.bakersville.com/placenames.html 1
GeoLocate, http://www.burrcook.com/history/ontario/hopewell/chapin.htm 1
GeoLocate, http://www.cowboysofcolor.org/profile.php?ID=68 1
GeoLocate, http://www.dubuquecounty.org/Conservation/HeritageTrail/tabid/193/Default.aspx 1
GeoLocate, http://www.fossilsites.com/STATES/MI.HTM 1
GeoLocate, http://www.geology.cz/bulletin/fulltext/bullgeosci841_1109.pdf, http://www.ags.gov.ab.ca/publications/MAP/PDF/MAP_236.PDF 1
GeoLocate, http://www.geologyontario.mndmf.gov.on.ca/mndmfiles/pub/data/imaging/OFR5661/OFR5661.pdf 1
GeoLocate, http://www.ghosttowns.com/states/sd/brownsville.html 1
GeoLocate, http://www.historicmapworks.com/Map/CA/242/Rainham+Township++South+Cayuga+Township++Selkirk+Village/Haldimand+County+1879/Ontario/ 1
GeoLocate, http://www.jstor.org/stable/2992936?seq=1#page_scan_tab_contents, http://digital.lib.uiowa.edu/cdm/ref/collection/atlases/id/644 1
GeoLocate, http://www.kansasmemory.org/item/209403/page/3 1
GeoLocate, http://www.kansasmemory.org/item/216457/page/4 1
GeoLocate, http://www.kansasmemory.org/item/223966/page/5 1
GeoLocate, http://www.mapquest.com/us/ny/voak 1
GeoLocate, http://www.michigan.gov/documents/deq/RI_18opt_308970_7.pdf pg 7 fig 4 1
GeoLocate, http://www.michmarkers.com/startup.asp?startpage=S0145.htm 1
GeoLocate, http://www.mindat.org/loc-18128.html 1
GeoLocate, http://www.mindat.org/loc-252456.html 1
GeoLocate, http://www.mytopo.com/products/quad.cfm?code=o41079g3 1
GeoLocate, http://www.niagarafrontier.com/site.html 1
GeoLocate, http://www.nr.gov.nl.ca/nr/mines/geoscience/publications/report06_02.pdf 1
GeoLocate, http://www.nrla.org/uploadedfiles/PDF_docs/1925_JULY.pdf 1
GeoLocate, http://www.restorequarries.eu/enci-maastricht/4579800705 1
GeoLocate, http://www.shropshiregeology.org.uk/shropgeol/we/wenlockxx.gif 1
GeoLocate, http://www.state.nj.us/dep/njgs/pricelst/ofmap/ofm25.pdf 1
GeoLocate, http://www.superpages.com/yellowpages/C-Quarries/S-FL/T-Tampa/ 1
GeoLocate, http://www.thefossilforum.com/index.php?/topic/10001-rockport-quarry/page-2 1
GeoLocate, http://www.travelvantage.com/south-africa-blue-train-pretoria-to-cape-town-2d1n 1
GeoLocate, http://www.worldwaterfalldatabase.com/waterfall/Bruces-Gully-Falls-8715/ 1
GeoLocate, https://archive.org/stream/bulletinsofameri301pale/bulletinsofameri301pale_djvu.txt 1
GeoLocate, https://books.google.com/books?id=eYvVAAAAIAAJ&pg=RA1-PA107&lpg=RA1-PA107&dq=Comarocystites+punctatus+curdsville+ontario&source=bl&ots=S1i5sg7hBU&sig=0gJKLyjq18afb65q8-rer0MuyCs&hl=en&sa=X&ved=0CB0Q6AEwAGoVChMIh9qA8fmhyAIVBZmACh2S0wF9#v=onepage 1
GeoLocate, https://books.google.com/books?id=rjj4mFk8_S8C&pg=PA34&lpg=PA34&dq=Merista+Brachiopod+cumberland&source=bl&ots=72MM8j24Ot&sig=XCWUpYrjng9Ru58JzCszczvm9_8&hl=en&sa=X&ei=pQk5VZ7bPMO6ggTIzoDYCA&ved=0CDUQ6AEwBw#v=onepage&q=Merista%20Brachiopod%20cu 1
GeoLocate, https://buffalostreets.wordpress.com/2012/11/20/central-park/ 1
GeoLocate, https://en.wikipedia.org/wiki/Bonnechere_River 1
GeoLocate, https://en.wikipedia.org/wiki/L%C3%A9vis,_Quebec#/media/File:L%C3%A9vis_Quebec_location_diagram.png 1
GeoLocate, https://en.wikipedia.org/wiki/Random_Island 1
GeoLocate, https://en.wikipedia.org/wiki/Saint-Martin_(AMT) 1
GeoLocate, https://en.wikipedia.org/wiki/Zhili#/media/File:Qing_Dynasty_1820.png 1
GeoLocate, https://nmgs.nmt.edu/publications/guidebooks/downloads/12/12_p0097_p0104.pdf 1
GeoLocate, https://tools.wmflabs.org/geohack/geohack.php?pagename=Wootton_Bassett_Mud_Spring&params=51.53235_N_1.88895_W_region:GB_source:enwiki-osgb36(SU078815) 1
GeoLocate, https://tools.wmflabs.org/os/coor_g/?pagename=Wootton_Bassett_Mud_Spring&params=SU078815_region%3AGB_scale%3A25000 1
GeoLocate, https://tshaonline.org/handbook/online/articles/hrmax 1
GeoLocate, https://tshaonline.org/handbook/online/articles/hrs68 1
GeoLocate, https://tshaonline.org/handbook/online/articles/hrt56 1
GeoLocate, https://upload.wikimedia.org/wikipedia/commons/4/4b/Silesia_%28Now%29.png 1
GeoLocate, https://www.airbnb.com/rooms/884894 1
GeoLocate, Iowa Geological Survey Annual Report 1904 pg 470 1
GeoLocate, Krutak 1967 1
GeoLocate, Lexicon of Geologic Names of the United States for 1936-1960 Part 1 pg 751 1
GeoLocate, Peach&Horne 1899 pg 573 1
GeoLocate, pg 80 http://webcentral.uc.edu/eProf/media/attachment/eprofmediafile_285.pdf 1
GeoLocate, plate 1 http://thesis.library.caltech.edu/3277/1/Lohman_kf_1931.pdf 1
GeoLocate, Rigby 2008 pg 493 1
GeoLocate, Sander Rieppel and Bucher 1997 fig 1 1
GeoLocate; http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1250&context=igsar pg 356 1
GeOLocated 1
Google Maps, GeoLocate, “Historic Mills of Wayne and Boston Townships, Wayne County, Indiana” K. Jennings 2005, IU 1
Google Maps, GeoLocate, boydsstation.tumblr.com 1
Google Maps, GeoLocate, History of the Ohio Falls Cities and their Counties; Vol II, 1882 p. 396 1
Google Maps, GeoLocate, http://deepblue.lib.umich.edu/bitstream/handle/2027.42/48555/ID41?sequence=2 (Fig. 1 pg. 4) 1
Google Maps, GeoLocate, http://igs.indiana.edu/CMIS/Counties/Vigo/VigoSurfaceMineReports.pdf 1
Google Maps, GeoLocate, http://igs.indiana.edu/images/bedrock/about1.jpg 1
Google Maps, GeoLocate, http://indiana.hometownlocator.com/in/ripley/elrod.cfm 1
Google Maps, GeoLocate, http://kentucky.hometownlocator.com/ky/kenton/forest-hills.cfm 1
Google Maps, GeoLocate, http://oxfordmuseumassociation.com/properties/black-covered-bridge 1
Google Maps, GeoLocate, http://palaeo-electronica.org/2010_1/207/appendices.pdf 1
Google Maps, GeoLocate, http://paleobiodb.org/cgi-bin/bridge.pl?a=basicCollectionSearch&collection_no=87915 1
Google Maps, GeoLocate, http://peakery.com/bear-knob-kentucky/ 1
Google Maps, GeoLocate, http://us.geoview.info/rise_mill_hollow,4653248 1
Google Maps, GeoLocate, http://www.bullittcountyhistory.com/bchistory/theknobs.html 1
Google Maps, GeoLocate, http://www.cpws.com/OurHistory.html 1
Google Maps, GeoLocate, http://www.crooked-creek.org/ 1
Google Maps, GeoLocate, http://www.historicmapworks.com/Map/US/174696/Massie+Township++Harveysburg++Henpeck++Utica++Dodds+P+O+++Hickoryville/Warren+County+1891/Ohio/ 1
Google Maps, GeoLocate, http://www.kentonlibrary.org/?s=prisoners+lake 1
Google Maps, GeoLocate, http://www.mindat.org/maps.php?id=142476 1
Google Maps, GeoLocate, http://www.nkyviews.com/kenton/kenton25.htm 1
Google Maps, GeoLocate, http://www.ohioseagrant.osu.edu/_documents/publications/TB/TB-035%20The%20Steamer%20Adventure%20and%20the%20Kelleys%20Island%20Ohio%20Limestone%20Industry.pdf 1
Google Maps, GeoLocate, http://www.usgwarchives.net/ky/breckinridge/towns/harned.html 1
Google Maps, GeoLocate, http://www.waynet.org/maps/ 1
Google Maps, GeoLocate, http://zfein.com/photography/subway/ 1
Google Maps, GeoLocate, https://www.facebook.com/oldstlouisindiana, http://www.answers.com/Q/Where_is_St._Louis_indiana 1
No Data 1
not recorded 1
Topographic Map; GEOLocate 1

 


Precision

Let’s take a more detailed look at the precision of coordinates provided. When we talk about precision in this context we mean “the number of digits after the decimal point on a latitude or longitude that is recorded in decimal degrees.” Precision is a measure of the exactness of the latitude and longitude coordinates compared to reality. This comic illustrates the concept of precision well:

Image credit: xkcd

Image credit: xkcd

# Summarize precision for all records
precision <- raw_idb %>% 
  select(`dwc:decimalLatitude`, `dwc:decimalLongitude`) %>% 
  filter(!is.na(`dwc:decimalLatitude`) | !is.na(`dwc:decimalLongitude`)) %>% 
  mutate(lat = as.character(`dwc:decimalLatitude`)) %>% 
  mutate(lon = as.character(`dwc:decimalLongitude`)) %>% 
  separate(lat, c("int_lat", "dec_lat"), sep = "\\.") %>% 
  separate(lon, c("int_lon", "dec_lon"), sep = "\\.") %>% 
  mutate(precision_lat = str_length(dec_lat)) %>% 
  mutate(precision_lon = str_length(dec_lon)) %>% 
  mutate(precision_lat = recode(precision_lat, "1" = "0.1", 
                                "2" = "0.01",
                                "3" = "0.001",
                                "4" = "0.0001",
                                "5" = "0.00001",
                                "6" = "0.000001",
                                "7" = "0.0000001",
                                "8" = "0.00000001",
                                "9" = "0.000000001",
                                "10" = "0.0000000001")) %>% 
   mutate(precision_lon = recode(precision_lon, "1" = "0.1", 
                                "2" = "0.01",
                                "3" = "0.001",
                                "4" = "0.0001",
                                "5" = "0.00001",
                                "6" = "0.000001",
                                "7" = "0.0000001",
                                "8" = "0.00000001",
                                "9" = "0.000000001",
                                "10" = "0.0000000001")) %>% 
  group_by(precision_lat, precision_lon) %>% 
  summarise(n = n()) %>% 
  arrange(desc(n)) %>% 
  mutate(percent = round(n/2351102*100, 1)) %>% 
  rename(count = n)

 

Precision is an essential concept for paleo collections because reducing precision (typically by truncating decimals) is a common method we use to obscure locality data when sharing it widely.

Summary of precision in georeferenced data, determined from coordinate fields

 

precision_lat precision_lon count percent
0.000001 0.000001 705919 30.0
0.01 0.01 569041 24.2
0.00001 0.00001 204761 8.7
0.0001 0.0001 163805 7.0
0.0000001 0.0000001 105205 4.5
0.1 0.1 74231 3.2
0.000001 0.00001 63567 2.7
0.00001 0.000001 58538 2.5
0.01 0.1 52133 2.2
0.001 0.001 46861 2.0
0.0001 0.001 36495 1.6
0.00001 0.0001 30938 1.3
0.0000001 0.000001 25408 1.1
0.1 0.01 24225 1.0
0.0001 0.00001 15072 0.6
0.001 0.0001 13036 0.6
0.001 0.01 11958 0.5
NA 0.1 11917 0.5
0.000001 0.0001 11015 0.5
0.0001 0.01 9085 0.4
0.000001 0.0000001 8146 0.3
0.0001 0.000001 8140 0.3
NA NA 8068 0.3
0.1 NA 8040 0.3
0.0001 0.0000001 7811 0.3
0.0000001 0.00001 6491 0.3
0.00001 0.0000001 5779 0.2
0.01 0.0001 5230 0.2
0.00001 0.001 4633 0.2
0.01 0.001 4497 0.2
0.00001 0.01 3955 0.2
0.0000001 0.0001 3666 0.2
0.01 NA 3436 0.1
0.001 0.1 3433 0.1
0.0000001 0.001 3138 0.1
0.01 0.000001 3137 0.1
0.01 0.00001 2758 0.1
0.001 0.0000001 2527 0.1
0.000001 0.01 2525 0.1
0.000001 0.001 2079 0.1
0.1 0.000001 1971 0.1
0.001 0.00001 1881 0.1
NA 0.01 1609 0.1
0.00001 0.1 1515 0.1
0.001 0.000001 1091 0.0
0.000001 0.1 1046 0.0
NA 0.000001 1035 0.0
0.0000001 0.01 925 0.0
0.1 0.00001 887 0.0
0.0001 0.1 829 0.0
0.0000000001 0.0000000001 817 0.0
0.01 0.0000001 771 0.0
0.00000001 0.00000001 754 0.0
0.1 0.0000001 670 0.0
0.1 0.001 654 0.0
0.1 0.0001 629 0.0
0.000001 NA 625 0.0
0.0001 NA 605 0.0
0.000001 0.0000000001 404 0.0
0.00000001 0.0000000001 267 0.0
0.00000001 0.0000001 181 0.0
0.00000001 NA 139 0.0
0.0000001 NA 122 0.0
0.001 NA 120 0.0
NA 0.0001 116 0.0
0.00001 NA 112 0.0
0.0000000001 0.001 100 0.0
0.0000001 0.1 86 0.0
0.00000001 0.0001 70 0.0
0.000000001 0.000000001 56 0.0
0.0000000001 0.0001 41 0.0
0.00001 0.0000000001 40 0.0
NA 0.001 33 0.0
NA 0.00001 28 0.0
0.0001 0.0000000001 27 0.0
0.001 0.0000000001 27 0.0
0.0000000001 0.1 26 0.0
0.0001 0.00000001 26 0.0
0.0000001 0.00000001 17 0.0
0.000001 0.000000001 9 0.0
0.0000000001 0.000000001 7 0.0
0.0000000001 0.0000001 6 0.0
0.00000001 0.01 5 0.0
0.0000000001 0.00001 4 0.0
0.0000000001 0.01 4 0.0
0.00000001 0.000001 3 0.0
0.0000001 0.000000001 3 0.0
0.0000000001 NA 2 0.0
0.00000001 0.001 2 0.0
0.01 0.0000000001 2 0.0
0.000001 0.00000001 1 0.0
0.1 0.0000000001 1 0.0
NA 0.0000000001 1 0.0
NA 0.0000001 1 0.0

 


What kind of values do we see in other metadata fields?

Possible fields to look at:

# Unique values ? for...

# dwc:georeferencedBy
# dwc:georeferenceRemarks
# dwc:verbatimElevation
# dwc:minimumElevationInMeters
# dwc:maximumElevationInMeters
# dwc:maximumDepthInMeters
# dwc:minimumDepthInMeters
# dwc:coordinateUncertaintyInMeters
# dwc:footprintSRS
# dwc:footprintSpatialFit
# dwc:footprintWKT
# dwc:pointRadiusSpatialFit
# dwc:verbatimCoordinateSystem
# dwc:verbatimCoordinates
# dwc:verbatimDepth
# dwc:verbatimLatitude
# dwc:verbatimLocality
# dwc:verbatimLongitude
# dwc:verbatimSRS

What can we say about localities?

Possible geographic fields to look at:

Possible lithostratigraphic fields to look at:

# Unique values ? for...

# dwc:geologicalContextID
# dwc:lithostratigraphicTerms
# dwc:lowestBiostratigraphicZone
#   dwc:fieldNumber
#   dwc:locality
#   dwc:locationAccordingTo
# dwc:locationID
# dwc:locationRemarks

# Unique values ? for lithostratigraphic fields

# dwc:bed
# dwc:member
# dwc:formation
# dwc:earliestAgeOrLowestStage
# dwc:earliestEonOrLowestEonothem
# dwc:earliestEpochOrLowestSeries
# dwc:earliestEraOrLowestErathem
# dwc:earliestPeriodOrLowestSystem
# dwc:latestAgeOrHighestStage
# dwc:latestEonOrHighestEonothem
# dwc:latestEpochOrHighestSeries
# dwc:latestEraOrHighestErathem
# dwc:latestPeriodOrHighestSystem

Who is contributing this data?

# Unique values ? for...

# dwc:institutionCode
# dwc:institutionID
# dwc:collectionCode
# dwc:collectionID
# dwc:datasetID
# dwc:datasetName

# Unique values for `dwc:basisOfRecord` but beyond this dataset

What kind of data cleaning is conducted by aggregators?

# Look at geopoints
# Country cleanup?